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Circles -- Halting Studies 
 

1. Circles 0 and 1 
 
A large fraction of my statistical studies have been done with N=1, and it is assumed here.  It is 

also worth noting that statistical studies show that if a run is going to halt it usually does so within the 
first few placements. 

 
 

Fig. 1.  A worst case for circles 0 and 1.  The bounding region is blue.  Circle 0 (red) is at the center, and circle 1 
(green) is tangent to both circle 0 and the boundary. 

 
Two kinds of worst cases are of interest: Ones where earlier circles maximally block later ones, 

and ones where earlier circles minimally block later ones.  The construction of Fig. 1 is of the 
maximally-blocks kind.  The red circle 0 will block all later circle 1 (green) locations if it is placed in the 
exact center and c > 1.20977.  It is thus seen that if c > 1.20977 the circle-in-circle algorithm is not 
unconditionally nonhalting -- at least one halting configuration exists.  If we look at Fig. 7.1 of 
"Fractalize That" [1] it is evident that c1 cannot be higher than 1.20977.  The value 1.20977… will be 
called c*. 

This construction implies that as c increases beyond c* there is a halting probability which is > 
0.  In principle it can be calculated as a function of c. 

Figure 7.2 of "Fractalize That" gives a c1 value around 1.3, which differs substantially from 
1.20977.  This most likely arises from the limited resolution of the Monte Carlo method used for the 
data of Fig. 7.2.  If the halting probability is very small (as it will be with c only slightly above 1.20977) 
the Monte Carlo method will not resolve it.  Another limitation of the Monte Carlo method in low-
probability situations is that practical computation requires that some upper limit be placed on the 
number of trials for a given placement.  There is thus a question whether the probability is actually 
zero, or if in fact the expectation value of the number of trials for a placement is beyond the limit used 
in the code. 
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Fig. 2.  An example of the algorithm run with the critical value c=1.20977 with N=1 (30 circles, circular 
boundary).  The black region is available for the next placement.  With this c value there appears to be plenty of 

room for further placements. 
 

Figure  2 shows a typical run where red bands having a width equal to the next-to-be-placed 
radius surround each circle and the boundary.  The black area is thus the region available for the next 
placement.  Can it be proved that for c < 1.20977 there is always a place for the next placement for an 
arbitrarily large number of placements? 

 
2. Circles 0, 1, 2 
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Fig. 3.  A worst case for circles 0, 1, 2.  The bounding region is blue.  Circle 0 (red) is tangent to the boundary 
and circle 1, and circle 1 (green) is tangent to the boundary and circle 0.  Circle 2 is magenta and is tangent to 

the boundary. 

 
The main conclusion from Fig. 3 is that the algorithm is unconditionally halting when c > 

1.52241 because of the placements of circles 0 and 1.  Thus we can say (with reference to Fig. 7.1 of 
"Fractalize That") that c2 cannot be higher than 1.52241.  With this c value circles 0 and 1 can only 
have the positions shown, but many positions are possible for circle 2. 

This construction implies that as c falls below 1.52241 there is a halting probability which is < 1 
while for c > 1.52241 the algorithm always halts at placement 1. 

These results will change substantially for other values of N.  It is fairly straightforward to 
construct extreme examples with inclusive boundaries, and would be much harder with periodic 
boundaries.  Figure 7.2 of "Fractalize That" [1] shows that the choice of periodic versus inclusive 
boundaries makes a very large difference. 

 
3. Halting at Placement 1. 

 
Figures 1 and 3 show extreme cases for placement of circles 0 and 1.  Since most runs that halt 

do so early in the process it is interesting to trace out the halting probability versus c for circles 0 and 
1.  Code was constructed that looks only at this question.  The x,y for circle 0 was chosen uniformly 
such that it does not overlap the circular boundary.  Choices of x,y for circle 1 were made repeatedly 
until (a) a successful placement was made or (b) the (large) maximum allowed number of random 
trials was exceeded.  Case (b) is interpreted as halting.  For "high" c values where halting is common 
the calculations run very slowly because a quite large maximum number of allowed trials is needed 
and most of the time the search for circle 1 runs to the maximum number of allowed trials. 

Each point in Fig. 4 represents 3000 random positions of circle 0, so that the statistics are 
reasonably good.  
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Fig. 4.  A monte carlo calculation of the halting probability at placement 1 versus c. 

 
The code does not assume the critical c values of 1.20977 or 1.52241, but the probability 

smoothly approaches the values 0 and 1 as the corresponding c values are approached.  The results 
of the monte carlo calculations are thus in good agreement with the extreme examples in Figs. 1 and 
3 (and with Fig. 7.2 of [1]).  At this time I wonder if Fig. 3 isn't the whole story (at least when N=1) -- 
that failure occurs at placement 1 or not at all1. 

The curve defined by Fig. 4 appears to be asymmetric.  The halting probability is 0 for c 
<1.20977 and is 1 for c > 1.52241 from the constructions of Figs. 1 and 3.  The probability is 
approximately .5 when c = 1.42. 

Efforts to prove that random circle fractals are unconditionally nonhalting should focus on the 
region c < 1.20977 (with N=1).  Such a proof would require not only that there be no halting at 
placement 1 (as studied here), but that there also be none at placements 2, 3, … . 

One can conclude from Fig. 3 that in determining the behavior of the halting probability curve 
(Fig. 3) near the upper limit at c = 1.52241 one can ignore circle 2 since it always fits.  Thus an 
analytical approach near this limit would only need to consider circles 0 and 1. 

 
4. Definition of the Dimensionless Gasket Area 
  

For a statistical geometry fractal with bounding area A, the i-th shape area Ai (i = 0, 1, …) is given by 
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1 The data for Fig. 7.2 of [1] was taken out to a substantial number of placements, with a rather high maximum 

number of trials.  It has subsequently been understood that for good statistics the maximum trials must be a 
substantial multiple of the normal average number of trials for the given placement number.  Since average trials 
rises steeply with placements, the max trials used there may not have been adequate for higher placement 
numbers. 
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We let gaskA  be the gasket area after n placements and define the dimensionless gasket area 

),,( nNc by 
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  (2) 

 

It is seen that Γ is a ratio of the gasket area after n placements to the product of the last-placed 

shape number n and the area of shape n+1.  Γ is the mean area available for the next placement in 

units of the next-placed area An+1. 

 
5. Numerical Study of the Dimensionless Gasket Area 

 

Calculations of Γ have been made, using double-precision arithmetic.  The tabulation below 

shows the results for N=2. 

 
  values of gasket_area/(n_place*next_area)  

 

     c=1.2000000 c=1.2500000 c=1.3333333  

n=  1  21.937114   17.958609   13.995080    

    2  13.413474   10.921224    8.434314    

    4   9.179358    7.431837    5.686002    

    8   7.078779    5.704498    4.330698    

   16   6.035766    4.848462    3.661286    

   32   5.516818    4.423121    3.329454    

   64   5.258117    4.211258    3.164403    

  128   5.128981    4.105550    3.082116    

  256   5.064469    4.052754    3.041035    

  512   5.032227    4.026372    3.020510    

 1024   5.016109    4.013184    3.010251    

 2048   5.008051    4.006591    3.005122    

 4096   5.004022    4.003295    3.002556    

 8192   5.002006    4.001647    3.001273    

16384   5.000998    4.000823    3.000629    

32768   5.000493    4.000411    3.000306    

65536   5.000240    4.000204    3.000142    

 

The first column is the placement number n, tabulated at points where n is a power of 2.  

Columns 2-4 use the c values listed at the head of each column.  The reader can see that as n 

becomes large Γ appears to be converging toward the integers 5, 4, and 3 respectively.  The following 

conjectures are offered based on computation: 
 

   
1

1
),,(




c
nNc   (3a) 



John Shier -- Worst Cases and Halting v. 5 -- Oct. 2014 -- p. 6 

   
1

1
),,(




c
nNcLimn   (3b) 

 
This is a quite simple relationship.  Computations indicate that this relationship holds 

independent of n and N, i.e., it is only dependent on c.  As n becomes large the > symbol can be 

replaced by .  It relates the amount of space available for placement directly to the power law 

exponent c.  It is perhaps significant that this relationship does not depend on the shape, i.e., it holds 

for any shape.  If area is replaced by volume, it also holds for the 3D case. 
It is not at all obvious why complicated Eq. (2) should result in this very simple result.  For the 

present one can explore the "never halts" question using Eq. (3) as appropriate.  If this proves fruitful, 
a formal proof of Eq. (3) would be called for.  Equation (3) can be rearranged to give: 
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6. Is Halting Always at Circle 1? 
 
Code was created to rapidly determine at what placement halting occurs for circles within a 

circle.  Because of the observation that halting always occurs at an early stage, only the first 4 circles 
were placed.  This greatly accelerates the computation.  The criterion for halting was set at 1,000,000 
unsuccessful trials. 

With N=1 the results showed no halting at any placement other than circle 1.  This was 
surprising.  The code was checked with extreme cases like c=1.9 and N=6 and there was halting at 
placements beyond 1, indicating that the code is correct.  A successful theory should account for this 
halting only at placement 1. 
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Fig. 5.  A monte carlo calculation of the halting probability at placement 1 versus c with N=1.  Each point 
represents 2000 runs. 

 
7. The Placement Probability. 

 
If the total "black" area (see Fig. 2) is Ab, and the area of the bounding circle less the halo width 

is A, we can define the placement probability ppl as: 
 

A

A
p b

pl    (5) 

 
One can calculate the black area numerically after each placement, thus creating a record of the 

behavior of ppl versus placement number n.  Figure 6 shows an example. 

 
Fig. 6.  The placement probability versus placed shapes n with c=1.21 and N=1, placements 1 to 500.  There 

are 4 data sets for 4 runs, each with different-color dots.  The blue line has a slope c which is the 
theoretical slope of the curve for large numbers of placements.  The raster used for determining the black area 

was 256x256. 

 
This is a noisy process, but finds simple qualitative explanations.  It must be kept in mind that 

the red "halos" around each circle get narrower as the algorithm progresses.  For those black areas 
which are unaffected by a new placement (most of them) this means that the associated black area 
increases.  This can account for the episodes of steadily rising probability seen in Fig. 6.  Occasionally 
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the placement falls within a large black area, which sharply reduces the associated black area.  This 
can account for the downward excursions of ppl, which are often quite sharp and distinct.  An 
especially large one occurs at placement 11. 

It is interesting that the lowest probability occurs for n=3 for the blue data set, which supports 
the idea that "early" halting may be the dominant form of halting.  By n=500 the different runs appear 
to be converging to a single behavior. 

The amount of noise in a plot of this kind falls for large n because the process now has a large 
number of small, distinct black areas available, so that things "average out" and the large downward 
excursions seen for few placements are much smaller with many placements.  The relative effect of 
changes in the halo width with placement number is smaller with many placements.  

This is a stochastic process with memory.  Events at a given placement affect later events.  It is 
also evident that the placement probability at a given placement number has a statistical distribution 
of substantial width. 

If the cumulative trials versus placement number is a power law with exponent c (as is usually 

observed for circles), the relationship in Fig. 6 should be a power law with exponent (c1).  In a log-
log plot a power law with this exponent has the slope of the blue line in Fig. 6.  About all one can say 
is that the data is "not incompatible" which such a power law, given the noise and scatter.  A 
comparable data set for the 1D case can be seen in Fig. 8.8 of "Fractalize That". 

 
8. References. 

 
 [1] "Fractalize That", John Shier (2013-2014, various printings), privately printed book. 
 
The best published source for a mathematical description of the algorithm is: 
 
"An Algorithm for Random Fractal Filling of Space", John Shier and Paul Bourke 
Computer Graphics Forum, Vol. 32, Issue 8, pp. 89-97, December 2013. 

 
Copies of the last version of the paper to go to the editor can be downloaded from the author's web 
site (or that of Paul Bourke).  The most recent publication on statistical geometry fractals is 
 
Dunham and Shier, "The Art of Random Fractals" in Proceedings of the 2014 Bridges conference, 
Seoul, Korea (August 2014). 
 
It can be viewed at the Bridges web site. 
 


