
Multishapes and Packability in Statistical Geometry 
One of the interesting questions about statistical geometry [1-3] fractals is "How does the number of 
needed trials vary with the shape?  Toward this end I have constructed code which fractalizes 
"multishapes" -- blobs with varying degrees of roughness and thus differing "packability".   

 
Fig. 1.  Some examples of placed multishapes.  In both cases c = 1.2 and N = 1.  In the left-hand picture δ = .05 
while on the right δ = .25.  Note the correlation of neighboring shapes on the right-hand side (shown by the "islands" 
of similar colors/shapes).  Color is a continuous function of shape (see text). 

The basic algorithm is described in Appendix A and in the references. 

1. The Multishape Defined. 

In this study the shape was defined in polar coordinates relative to the randomly-chosen origin point x,y.  
The equation for a multishape is 

)])4cos()3cos()2[cos(1()( 321 φθφθφθδθ ++++++= Rr   Eq. (1) 

One might expect a cos(θ+φ0) term but it is omitted as it simply results in another circle of larger area 
with its center shifted.  The phase angles φ are random variables uniformly distributed over the interval 
from 0 to 2π.  If one wishes to avoid negative r values, δ < 1/3. 

The resulting shapes go from circles when δ = 0 to complicated many-lobed things as δ increases.  Thus 
we have a shape whose "roughness" can be continuously varied.  This can be seen in Fig. 1.  The most 
prominent features for large δ are the sharp "dents" and the broad lobes. 
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In the statistical geometry algorithm one must know the area of the shape.  A fairly straightforward 
exercise in calculus shows that 

     Eq. (2) )5.11(2 δπ += RA

when 3 terms are used.  A more general formula is given in Appendix C. 

The color scheme encodes the shape.  The shape is defined only by the three phase angles φ.  The RGB 
color system has 3 dimensions, and the strength of the red color is made proportional to φ 1, etc. so that 
each color uniquely encodes a shape.  This was done to see if there is correlation in the shapes.  Each new 
trial is made with a new set of (φ 1, φ 2, φ 3) with random values uniformly distributed between 0 and 2π. 

2. The Number of Trials, Effect of δ. 

 

Fig. 2.  Log-log plots of the cumulative number of trials needed to place n shapes.  It can be seen that the data 
follows a straight line for large n in all cases. 
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3. The Effect of the Parameter c. 

 

Fig. 3.  Log-log plots of the cumulative number of trials needed to place n shapes with constant δ and variable c.  
While variation in δ does not change the power law exponent f, changes in c affect it strongly.  A crude 
extrapolation of the straight-line segments with a ruler shows that they approximately converge at n = 1 (where 
log10(n) = 0). 
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Fig. 4.  Two examples of the fractal patterns corresponding to the cases in Fig. 3.  On the left c = 1.20 while on the 
right c = 1.36.  In neither case does it appear that changing c makes an observable difference in the correlation, 
which appears to the eye to be random in both instances.  Apparently only δ affects correlation.  The packing (fill) is 
much tighter with c = 1.36, which agrees with what is seen in the simple cases of circles and squares.  Periodic 
boundary conditions. 

4. Amoebas -- a Difficult Case. 

It was decided to look at a more complicated shape by using a different set of sinusoids.  The only change 
was to use the 3rd, 5th, 7th harmonics instead of 2nd, 3rd, 4th (see Eq. (3)).  Note that 3,5,7 are all prime 
numbers and have no common divisor.  This produces a much more varied and hard-to-fit set of shapes 
which I have called "amoebas". 

)])7cos()5cos()3[cos(1()( 321 φθφθφθδθ ++++++= Rr   Eq. (3) 

In the example c = 1.32, N = 1, and δ = .15. 

The resulting fractal is shown in Fig. 5, and a plot of the data in Fig. 6.  This shape has very low 
packability.  A reasonable definition of packability as a number remains to be found. 
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Fig. 5.  "Amoebas" created by using higher-frequency harmonics of orders 3,5,7 (see Eq. (3)).  There does appear to 
be a degree of correlation here -- substantially more so than with the simpler multishapes with the same δ.  The 
inventive viewer can see turtles, trees, ponds, snowmen, ink blots, catsup splats, ghosts, … . 
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Fig. 6.  Data plot for the "amoebas".  Despite the very slow fractalization it appears that the ncum(n) curve assumes a 
power law with the modest exponent of f  = 1.58 -- not far from what was seen in Fig. 3 for c = 1.32.  Fractalization 
is slow not because of a high f but because of a high K (see Eq. (5)).  The "oscillations" around the main trend of the 
data are often seen for hard-to-fractalize cases. 

5. Gears. 

This is a simple shape to describe and provides a nice test of packability (see Fig. 7). 

  )])7[cos(1()( 1φθδθ ++= Rr   Eq. (4) 

The two key parameters for adjustment in packability studies are the number of teeth (chosen here to be 
the prime number 7) and the fractal exponent c. 

With the relatively high c value (1.29) used here one must have partial "meshing" of the gears to achieve 
placement, and while it runs very slowly the exponent f is not particularly large. 
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Fig. 7.  Fractalized "gears".  c = 1.29, N = 1, 3693 shapes, 92.1% fill.  120 927 421 trials (for an average of 32745 
trials per placement).  f ≅ 1.65.  The color is a continuous function of the rotation angle; there is no obvious 
correlation. 

6. Discussion and Conclusions. 

• It is evident that similarity of shapes is not a requirement for fractalization.  For the multishapes 
no two shapes are congruent with each other. 

• The ncum versus n curve1 follows a power law for large n in all cases. 

    Eq. (5) f
cum Knnn ≅)(

                                                 
1 I have worked with the cumulative data rather than the data for average number of trials needed to place the n-th 
shape.  The biggest advantage of this is that it has some built-in averaging and is far less noisy.  One can find the 
average number of trials needed for a given n by taking the derivative of ncum(n) with respect to n.  This results in a 
power law with exponent f−1. 
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• This data supports the claim that for any number n of shapes to be placed the number m of 
required trials is always finite and predictable, i.e., the algorithm never halts2. 

• The exponent f in this power law is the same for all values of δ (within statistical error) with a 
fixed c, but varies substantially as c changes. 

• The factor K in the power law of Eq. (5) increases very rapidly as δ increases (with fixed c).  All 
of the increase in the number of trials needed for n placements can be ascribed to changes in K. 

• The run time penalty for a hard-to-fractalize shape is quite large.  K increases 100-fold between δ 
= .05 and δ = .25 (with c = 1.20). 

• The process (algorithm) appears to have a "transient" region for low n, and settle down to a 
predictable "steady state" power-law condition for larger n.  There are thus two regions of 
behavior. 

• There is no sign that there is a limit for δ beyond which the multishapes can no longer be 
fractalized. 

• The algorithm appears to have two regions of operation.  For low n there is a very steep rise in the 
number of trials per placement with increasing n.  ncum(n) then goes over to a power law for large 
n (Eq. (5)).  These regions can be thought of as "initial transient" and a "steady state" regimes. 

The strongest conjecture that one can make is that  "The statistical geometry algorithm can fractalize any 
shape".  If true, this is a surprising thing and suggests that fractalizability is a "property of two-
dimensional space".  Another conjecture is that it works for any sequence of shapes so long as the area 
law is obeyed. 

Shapes which cannot be fractalized have yet to be found despite substantial searching by the author and 
others.  Some shapes fractalize very slowly.  Hard-to-fractalize shapes seem to work better at lower c 
values. 

The algorithm shows fairly strong correlation of the multishapes for large δ.  This can be seen in Fig. 1.  
On the left-hand side there is very little mutual correlation, which is shown by the fact that the colors are 
quite random.  On the right-hand side where the packability is low and many trials are needed the 

 
2 There are two kinds of numbers that one can think of in considering whether the algorithm stops.  In the practical 
execution of the algorithm one uses finite-precision floating point numbers.  In the mathematical world one would 
think of infinite-precision numbers.  With finite precision the algorithm will eventually stop.  The best assessment 
one can make at this time is that with "mathematician's" numbers the process will continue indefinitely in a fractal 
"self-similar" way.  It is noted, however, that computational experiments fall far short of a rigorous proof. 



correlation is fairly strong.  There are islands of similar colors showing that the process3 must "choose" 
similar shapes within a given region to achieve placement. 

It would be interesting to find a mathematical description of the correlation phenomena in these fractals 
so that a number or function would describe the average correlation, but this remains to be done. 
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Appendix A. The Statistical Geometry Algorithm. 

It has been found [1]-[3] that it is possible to create fractal patterns of a wide variety of geometric shapes 
by the following algorithm: 

1. Create a sequence of areas Ai equal to ...,
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(square, rectangle, circle, …) A to be filled. 

2. Sum the areas Ai to infinity, using the Hurwitz zeta4 function 
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.  It will be seen that the sum of all these 

redefined areas is just A. 

                                                 
3 The author is inclined to see parallels between this "random search" process and the widely studied "random walk" 
processes.  Both processes involve randomness constrained by previous events, i.e., constrained randomness.  Both 
processes are susceptible to many variations. 

4 The definitions of the Riemann and Hurwitz zeta functions can be found in Wikipedia. 
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4. Let i = 0.  Place a shape having area S0 in the area A at a random position x,y such that it falls entirely 
within area A.  Increment i.  This is the "initial placement". 

5. Place a shape having area Si entirely within A at a random position x,y such that it falls entirely within 
A.  If this shape overlaps with any previously-placed shape repeat step 5.  This is a "trial". 

6. If this shape does not overlap with any previously-placed shape put x,y and the shape dimensions in the 
"placed shapes" data base, increment i, and go to step 5.  This is a "placement". 

7. Stop when i reaches a set number, percentage filled area reaches a set value, or other. 

One will note that the dimensions of the shapes are nowhere specified.  They are calculated from the 
areas.  A very wide variety of shapes have been found to be "fractalizable" in this way. 

The parameters c and N can have a variety of values.  The parameter c is often in the range 1.2-1.4 with a 
largest usable value around 1.51.  N can be 1 or larger, and need not be an integer. 

By construction the result is a space-filling random fractal -- if the process never halts.  Available 
evidence [1]-[3] says that it does not.  The power law area sequence ensures that it has the fractal 
"statistical self-similarity" (scale-free) property.  And the random search ensures that no two circles will 
ever touch, so that the "gasket" is a single continuous object. 

Appendix B. Data Fitting. 

The raw data were converted to log10 values.  These values were then fitted by least squares adjustment to 
a straight line with the points weighted as the y value (the cumulative number of trials required).  Note 
that the weighting was done with the ncum value, not its logarithm.  This weighting had the effect of 
emphasizing the right-hand side of the curves in Fig. 2 so that the slopes (exponents) found relate to the 
"steady state" part of the data (large n). 

Appendix C. The Area of a Multishape. 

Let the polar equation r(θ) for a shape be given by 
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The area in polar coordinates is 
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If we insert our general formula (C1) into this it becomes 
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The first term in the integral is just 2π.  The second term is zero because such a sinusoid is as often 
positive as negative and the + and − contributions cancel.  The third term produces a big mess of squared 
and cross terms, but this simplifies greatly when one observes that the sinusoids are orthogonal5 
functions, hence only the square terms survive in the integration.  Thus 
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When all of the am are zero the formula goes over to the well-known equation for the area of a circle of 
radius R (as it must). 

                                                 
5 The orthogonality property of sinusoidal "harmonics" is described in 100s of textbooks on mathematics, science, 
and engineering, usually under the heading of "Fourier series". 
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